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One of the main physical constraints the that wind field has to satisfy, is the conservation of mass [1,2].  
Several methods have been proposed to get mass-consistent wind fields from a data set provided by a 
meteorological network of numerical solutions of the hydrodynamic equations. These methods go from a 
simple interpolation to the numerical solution of primitive-equation models in 3D or 4D data-assimilation 
schemes [3]. Variational Mass consistent models (VMCM’s)  of the wind field, is a class a class of 
diagnostic models that is intermediate in sophistication between interpolated and primitive-equation 
models and attempts to satisfy the continuity equation [4-7]. Several studies give evidence that this 
models appear to suitable for several applications, since they introduce a fewer number of arbitrary 
parameters [5-7]. VMCM's have been applied to modeling the transport, diffusion and dispersion of 
atmospheric pollutants and as input of prognostic models [5-11], a review of these models is given in Refs. 
[5,6]. The simplicity of VMCM's has motivated the development of new computational algorithms [11-14] 
and applications for air quality modeling and climatological studies [15,16] over the last decades.  
 
The main aim of this work is to propose a scheme to compute VMCM’s. The scheme has the following 
features:  (i) The formulation uses a functional in the space of contravariant vector fields that leads to an 
elliptic equation which can be solved explicitly by means of trigonometric Fourier series, independently of 
the complexity of the terrain. This reduces the computational problem to the use of 2D and 3D Fast 
Fourier Algorithm, for which there are highly efficient computational routines. (ii) The scheme yields an 
explicit expression of the accuracy of the wind field to satisfy the continuity equation, expression that 
requires only the estimation of a three-dimensional Fourier Series. (iii) The boundary conditions are easy 
to use and improve in several orders of magnitude the accuracy with which velocity field satisfies the 
continuity equation.  The method is illustrated by means of analytic and numerical examples to estimate 
the error produces by the estimation of Fourier coefficients with the Fast Fourier Transform algorithm. 
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