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1. Introduction

One of the main physical constraints that wind field has to satisfy, is the conservation of mass [1,2].
Several methods have been proposed to get mass-consistent wind fields from a data set provided
by a meteorological network of numerical solutions of the hydrodynamic equations. These methods
go from a simple interpolation to the numerical solution of primitive-equation models in 3D or 4D
data-assimilation schemes [3]. The class of Variational Mass consistent models (VMCM’s) of the
wind field, belongs to a class of diagnostic models that is intermediate in sophistication between
interpolated and primitive-equation models and attempts to satisfy the continuity equation [2-6].
Several studies give evidence that these models appear to be suitable for several applications since
they introduce a fewer number of arbitrary parameters [5-7]. VMCM’s have been applied to model
the transport, diffusion and dispersion of atmospheric pollutants and as input of prognostic models
[5-13], a review of these models is given in Refs. [5,6]. The simplicity of VMCM’s has motivated
the development of new computational algorithms [11-15] and applications for air quality modeling
and climatological studies [12,16,17] over the last decades.

The main aim of this work is to propose a scheme to compute VMCM’s. The scheme has the
following features: (i) The formulation uses a functional in the space of contravariant vector fields
that leads to an elliptic equation which can be solved explicitly by means of eigenfunction expansions
independently of the complexity of the terrain. This reduces the computational problem to the use
of 2D and 3D Fast Fourier Algorithm (FFT), for which there are highly efficient computational
routines. (ii) The scheme yields an explicit expression of the accuracy of the wind field to satisfy
the continuity equation, expression that requires only the estimation of a three-dimensional Fourier
Series. (iii) The imposed boundary conditions are easy to use and improve in several orders of
magnitude the accuracy with which velocity field satisfies the continuity equation. The method is
illustrated by numerical examples. Preliminary formal results of our approach are found in [18].

2. The proposal

Our proposal considers a bounded region Ωσ in computational space σ1σ2σ3 = xyσ with bound-
ary Γσ. Let Γ be the image of Γσ when the cartesian coordinates transformation equations are given
by

xi = xi(σj) . (2.1)

If n is the outward unit normal to Γ and vT denotes the true velocity field it is natural to consider
the estimation of a velocity field with the physical constraint

n · v = n · vT on the whole boundary Γ . (2.2)

The formulation to get a VMCM from an initial field v0 in Ωσ, is as follows. For a given symmetric
and positive–definite matrix S = {Sij}, we want to find the field v whose contravariant form vη

minimizes the functional
J(vη) =

∫

Ωσ

(vη−v0η) · S(vη−v0η)dΩσ (2.3)
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subject to the constraint ∇ · v = 0 and (2.2). The field vη is unique and given by

vη = v0η +
√

gS−1∇σλ . (2.4)

where
√

g is the Jacobian of transformation equations (2.1). The constraints imply that λ is solution
of the elliptic problem

Lλ =
√

g∇ · v0 in Ωσ, Lλ = nσ · (vη
T−v0η) on Γσ , (2.5)

where we set L ≡ −∇σ · gS−1∇σ, L = nσ · √gS−1∇σ. To get a practical form of problem (2.5) we
consider: (i) A diagonal matrix S with elements S11 = S22 = 1, with constant S3 ≡ S33, (ii) the
domain

Ωσ = Ωxy × (0, σM ) , Ωxy = (0, xM )× (0, yM ) ,

and (iii) the coordinate σ = z− h (x, y) where h (x, y) denotes the terrain elevation with respect to
the xy plane.

The boundary condition (2.2) is estimated as follows. In meteorology and oceanography, where
the vertical velocity is not measured by operational networks, the interpolation of data with stan-
dard methods will yield an initial field of the form

v0 = u0i + v0j . (2.6)

This field yields the simplest mass-consistent field

U0 = v0 + w0k (2.7a)

where the vertical velocity w0 is determined by the problem

∇ ·U0 = 0 in Ω subject to U0 · n = 0 on σ = 0 , (2.7b)

where we have assumed σ satisfies that σ(x, y, z) = 0 holds for z = h (x, y). The solution is

w0 = hxu0 + hyv
0 −

∫ σ

0
(∂xu0 + ∂yv

0)ds . (2.7c)

Thus we get the problem

Lλ = ∇ · v0 in Ωσ, Lλ = nσ · (U0η−v0η) on Γσ , (2.8)

For computational purposes, problem (2.8) is replaced by the approximated one

Lλmn = Fmn in Ωσ, Lλmn = ξmn on Γσ , (2.9)

where λmn, Fmn, ξmn, are Fourier series of λ, F ≡ ∇ · v0, nσ · (U0η−v0η) on Γσ, with the
eigenfunctions of −∂2

x, −∂2
y , subject to Neumann boundary conditions. The eigenfunctions are

φi=0 = 1/
√

xM , φi≥1 =
√

2/xM cosωix, ωi = iπ/xM ,

φj=0 = 1/
√

yM , φj≥1 =
√

2/yM cosωjy, ωj = jπ/yM .

The dependence of λmn in σ is computed by means of Green’s functions. Detailed expressions are
given in [18,19]. The corresponding field vmn has the contravariant form

vη
mn = v0η

mn + S−1∇σλmn , (2.10)

and its divergence is given by
∇ · vmn = F − Fmn . (2.11)
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An important feature of vmn is that it allows us to recover U0 by means of the limiting procedure

lim
S3→0

vmn = U0
mn (2.12)

where U0
mn is the corresponding Fourier series of U0.

3. Examples

In this section we give some examples with a nontrivial topographic surface h(x, y). The stream-
lines of vmn are computed with the fourth-order Runge-Kutta method.

Example 1. Consider a constant field
v0 = u0i + v0j (3.1)

and the topographic surface

h = 0.2 [1 + cos(ωhx) cos(ωhy)] with ωh = 4π/xM . (3.2)

We have ∇ · v0 = 0 but v0 does not satisfy BC v0 · n = 0 on z = h. This yields ∇ · vmn = 0 for all
m, n, the product mn determines the accuracy with which vmn satisfies n ·vmn = 0 on z = h. The
field vm=n=32 is computed in a domain Ωσ with xM = yM = 10 km, σM = 5 km, u0 = v0 = 0.3
ms−1. Figure 1 shows the resulting streamlines of v0, vmn.

(a) (b)

Figure 1: a). The initial v0 field: v0 = 0.3i+0.3j, over a terrain h = 0.2 [1 + cos(1.26x) cos(1.26y)],
scale is in km, colors in the perpendicular plane (framed in red) show the magnitud of the vector
field at the given position, some current lines are shown in clear blue color. b). The resulting mass
conservative vf current lines, for the case in a) shown in clear blue color. The discretized mesh
being 32x32x6, with 6144 nodes in total.

Example 2. Consider
v0 = βxi + βyj

with β = 0.06 s−1. We have F = Fmn, ∇ · vmn = 0 for n, m ≥ 1, mn determines the accuracy
with which vmn is tangent to the terrain. The field vm=n=32 is computed in a domain Ωσ with
xM = yM = 10 km, σM = 5 km, and terrain h (3.2). Figure 2 shows the streamlines of v0, vmn.
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(a) (b)

Figure 2: a). The initial v0 field: v0 = 0.06xi + 0.06yj, over a terrain h =
0.2 [1 + cos(1.26x) cos(1.26y)], scale is in km, some current lines are shown passing near the cen-
ter of the domain. b). The resulting mass conservative vf current lines, for the case in a).The
discretized mesh being 32x32x6, with 6144 nodes in total.

Example 3. Consider an oscillating field

v0 = β sin(wx)i + β sin(wy)j

with β = 0.1 s−1, w = 0.6π, and the topographic surface h (3.2). The field vm=n=64 is computed
in a domain Ωσ with xM = yM = 10 km, σM = 5 km. Figure 3 shows some resulting streamlines
of vmn.

(a) (b)

Figure 3: a). Two sets of current lines of the resulting mass conservative field vf , for the Example
3. The discretized mesh being 64x64x6, with 24576 nodes in total.

Example 4. Consider the previous oscillating field multiplied by an exponential decaying with
height term

v0 = β exp(−σ/σM )(sin(wx)i + sin(wy)j)

with β = 0.1 s−1, σM = 5 km, w = 0.6π, and the topographic surface h (3.2). The field vm=n=64

is computed in a domain Ωσ with xM = yM = 10 km, σM = 5 km. Figure 4 shows resulting
streamlines of vmn passing through the middle of the domain.
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Figure 4: Current lines of the resulting mass conservative field vf , for the Example 4. The dis-
cretized mesh being 64x64x6, with 24576 nodes in total.

Our next example considers as the topography h(x, y) an interpolated region of 40km × 40km
of the valley of Mexico’s City shown in Figure 5.

Example 5. Consider the field v0 of Example 4. Figure 6 shows the streamlines of v0, vmn, over
the top of the Ajusco mountain in Mexico City.

4. Limitations of kinematic method to compute vertical velocity

Since the vertical velocity is not measured directly by operational networks, it has to be esti-
mated. A standard method to compute the vertical velocity from a field v0 = u0i+v0j obtained by
interpolation of data, is based on the integration of the continuity equation. This is the so-called
kinematic method [20] which consists in computing U0 = v0 + w0k by solving problem (2.7b),
which yields the vertical velocity (2.7c). However, we have the following result: The field U0 may
have an unphysical behavior. To show this consider the field

v0 = u0(x, y)i + v0(x, y)j . (4.1)

Let x̃(t, x0, y0), ỹ(t, x0, y0), be the solution of the initial value problem

ẋ = u0(x, y), ẏ = v0(x, y) . (4.2)

with initial conditions x0, y0. Replacing x̃, ỹ, into equation

ż = w0 [x, y, σ(x, y, z)] = hxu0 + hyv
0 −

∫ σ

0
(∂xu0 + ∂yv

0)ds (4.3)

and solving it with z(0) = z0 > h(x0, y0), we get z = z(t, x0, y0, z0). Thus the streamlines of U0

have the vector form

R(t, z, x0, y0) = rxy(t, x0, y0) + zk , rxy = x̃i + ỹj . (4.4)
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(a) (b)

Figure 5: a). The interpolated topography of Mexico City. b). Google Earth image for ubication
reference.

which is the vectorial equation of a cylindrical surface Sh generated by moving vertically the curve
rxy(t, x0, y0) on xy−plane. Therefore, the streamlines of U0 belong the surface Sh. This, in general,
are unrealistic. Let us see some examples.

Example 4.1. Consider a constant field v0 = u0i + v0j. The equations (4.2) have the solution
x = u0t + x0, y = v0t + y0. Replacing it into (4.5) we get

R = R = tv0 + zk + r0 , r0 = x0i + y0j, z = h(x, y) + z0 − h(x0, y0)

The is the equation of a vertical plane and we see that the streamlines of U0 are obtained by moving
vertically the curve defined by the intersection of plane R with the topography. In other words,
the shape of streamlines is the same for any z0. This behavior is unrealistic since the terrain effects
decrease as z0 increases, in such manner that the streamlines tend to horizontal lines rather than
follow the terrain.

Example 4.2. Consider v0 = βxi+βyj with constant β. The Eq. (4.2) yields x = x0e
−βt, y = y0e

−βt

and Eq. (4.4) yields the equation of a plane R = x(i+ y0/x0j) + zk. Equation (4.3) takes the form
ż = ḣ− 2βσ and yields z = h(x, y) + [z0 − h(x0, y0)] e−2βt, so that the streamlines of U0 converge
asymptotically toward the topography for β > 0.

The examples show that the surface R(t, z, x0, y0) contains the streamlines of U0 for the same
condition (x0, y0). The field vmnl has similar behavior for small S3 since U0 is a limiting case of
vmnl as S3 → 0 [Eq. (2.12)]. The proof is based on the following asymptotic expression

ẋ = u0(x, y) + S3O(S3;x, y, σ) , ẏ = v0(x, y) + S3O(S3; x, y, σ) (4.6)

These equations are coupled with the vertical coordinate z because of the terms with S3, so that
in general streamlines with the same condition (x0, y0) do not belong to the surface R(t, z, x0, y0).
As is shown below, this coupling can be used to generate a more realistic flow.

Small values of S3 yield unphysical fields vmn, which are basically equal to U0, since the behavior
of streamlines on the terrain is almost the same for larger z values. The examples of section 3 show
that the effect of the terrain on vmn can be adjusted with values S3 of order 1. This confirms the
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(a) (b)

Figure 6: a). The resulting mass conservative boundary layer wind field over the Ajusco mountain in
Mexico City. b). The wind current tubes, for the case in a).The discretized mesh being 100x100x6,
with 60000 nodes in total.

convenience of using free parameters in matrix S to get more realistic fields, as was pointed out by
other authors [5,6].

5. Accuracy of the mass balance

The main goal of the present method to compute a wind field, is to get a field that obey the
mass-balance. To show that this is indeed the case, in this section we report the flow-rate in
simple examples and the results are compared with values given by standard formulations [2,4-17].
Consider three-dimensional examples in a parallelepiped Ω with sides xM = yM , zM , a flat terrain
(h = 0) and the field

v0 = u0i with u0 = β e (y) f(z) g(x), xz

where β is a constant determined by the average velocity
〈
u0

〉
= |Ω|−1 ∫

Ω u0dΩ = 10 ms−1, |Ω| =
xMyMzM . Since in general the boundary value problem (2.8) has to be solved with approximations
in the vertical coordinate, we consider the problem

Lλmnl = Fmnl in Ωσ, Lλmnl = ξmnl on Γσ ,

where λmnl, Fmnl, ξmnl, are Fourier series of λ, F ≡ ∇ · v0, nσ · (U0η−v0η) on Γσ, with the
eigenfunctions of operator L subject to Neumann boundary conditions. The corresponding field is

vmnl = v0 + S−1∇λmnl .

We have F = βef∂xg, Fmnl = βenflġm, where

en =
n∑

j=1

gyjφj , fl =
l∑

k=1

fkφk , ġm =
m∑

i=1

ġiφi,

are the Fourier series of gy, f and ∂xg, respectively. The accuracy with which vmnl satisfies the
continuity equation is given by

∇ · vmnl = F − Fmnl = β ( e f ∂xg − en fl ġm) .

Instead of computing ∇ · vml point–by-point, we report the flux

F (Γ∗,vmnl) =
∫

Γ∗
vmnl · n ds
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in a region Ω∗ = (a, b)2 × (c, d) with boundary Γ∗. From a computational and theoretical point of
view, the flow-rate is a convenient quantity to compute the accuracy with which vmnl satisfies the
equation of continuity. In fact, the Schwarz inequality yields

|F (Γ∗,vmnl)| = |Ω∗| × ‖F − Fmnl‖Ω∗ , (5.16)

where |Ω∗| is the volume of region Ω∗ and ‖·‖Ω∗ is the norm of the Hilbert space L2 (Ω). The
completeness of eigenfunctions guarantees that the series Fmnl converges to F in norm, namely,

‖F − Fmnl‖Ω∗ =
[∫

Ω∗
(F − Fmnl)

2 dxdydz

]1/2

→ 0

as m, n, l, increase, so that we can compute a field vmnl with a prescribed flow-rate.

In order to compare our proposal with standard formulations, we report values of the flow-rate
given by fields v1, v2, which are define as follows. v1 minimizes J

(
v1

)
subject to n · v = 0 on

z = 0. The field is v1 = v0 + S−1∇λ(1) where λ(1) is given by the most common elliptic problem
considered in the literature to compute variational mass-consistent models [2,4-17], namely,

Lλ(1) = F , ∂zλ
(1)

⌋
z=0

= 0 , λ(1) = 0 on x = 0, xM , y = 0, yM , z = zM . (5.1)

This problem is replaced by Lλ
(1)
mnl = F

(1)
mnl where λ

(1)
mnl, F

(1)
mnl, are series of the eigenfunctions of L

subject to the boundary conditions (5.1). The resulting field is v1
mnl = v0 + S−1∇λ

(1)
mnl.

The second field v2 minimizes J
(
v2

)
subject to n ·v2 = n ·U0 on x = 0, xM , y = 0, yM , z = 0.

The field is v2 = v0 + S−1∇λ(2) where λ(2) is given by the problem

Lλ(2) = F , ∂zλ
(2)

⌋
z=0

= ∂xλ(2)
⌋

x=0,xM

= ∂yλ
(2)

⌋
y=0,yM

= 0 , λ(2) = 0 on z = zM . (5.2)

This problem is replaced by Lλ
(2)
mnl = F

(2)
mnl where λ

(2)
mnl, F

(2)
mnl, are series of the eigenfunctions of L

subject to the boundary conditions (5.1). The resulting field is v2
mnl = v0 + S−1∇λ

(2)
mnl.

Table I shows that the values F (Γ∗,vmnl) given by our proposal are exactly zero, in contrast, the
values given by standard approaches F

(
Γ∗,vi=1,2

mnl

)
are non zero and increase rapidly as Γ∗ tends to

the boundary Γ of region Ω. In Table II, the values F (Γ∗,vmnl) are lower than F
(
Γ∗,vi=1,2

mnl

)
for

interior regions and tend to the machine’s floating point zero Γ∗ → Γ whereas the values from vi=1,2
mnl

increase rapidly. These results show that our approach is indeed reliable to compute mass-consistent
wind fields.

TABLE I. Flux F (Γ∗,vm=n=l=50) in km3s−1 for v0 = βxzi.

wmnl � Ωi (8, 12)2×(2, 3) (4, 16)2×(1,4) (0, 20)2×(0, 5)
vmnl zero zero zero
v1

mnl 6× 10−7 3× 10−5 5× 10−2

v2
mnl 2× 10−7 1× 10−5 2× 10−2

TABLE II. Flux F (Γ∗,vm=n=l=50) in s−1 for u0 = βz cosωx, ω = π/2xM .

wmnl � Ωi (8, 12)2×(2, 3) (4, 16)2×(1,4) (0, 20)2×(0, 5)
vmnl −2× 10−8 −6× 10−7 zero
v1

mnl −4× 10−7 −3× 10−5 −4× 10−2

v2
mnl −2× 10−7 −1× 10−5 −1× 10−2
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More theoretical and numerical results about the effect of boundary conditions in VMCM’s are
given in Refs. [18,19,21,22].

6. Conclusions

We have seen a formulation to compute VMCMs, which has the following features: (i) It
leads to a separable elliptic equation which can be solved by means of eigenfunction expansions
independently of the complexity of the terrain. This reduces the computational problem to the use
of 2D and 3D Fast Fourier Algorithm (FFT), for which there are highly efficient computational
routines. (ii) The scheme yields an explicit expression of the accuracy of the wind field to satisfy
the continuity equation, expression that requires only the estimation of a three-dimensional Fourier
Series. (iii) The imposed boundary conditions are easy to use and improve in several orders of
magnitude the accuracy with which velocity field satisfies the continuity equation. In meteorology,
one of the methods used to estimate the vertical velocity from a smooth field v0 (2.17a), is the
estimation of U0 (2.17) or a similar one [20]. We saw that U0 may be unrealistic since the behavior
of its streamlines can be the same at any height.
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